
Checking Equivalence of SPMD Programs Using Non-

Interference

Stavros Tripakis
Christos Stergiou
Roberto Lublinerman

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-11

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-11.html

January 29, 2010

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
29 JAN 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Checking Equivalence of SPMD Programs Using Non-Interference

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We study one of the basic multicore and GPU programming models, namely, SPMD (Single-Program
Multiple-Data) programs. We define a formal model of SPMD programs based on interleaving threads
that manipulate global and local arrays, and synchronize via barriers. SPMD programs are written with
the intention to be deterministic, although programming errors may result in this not being true. SPMD
programs are also frequently modified toward optimal performance. These facts motivate us to develop
methods to check determinism and equivalence. A key property in achieving this is noninterference
formulated as validity of logical formulas automatically derived from the program, that imply
determinism. Automatically derived post-conditions can be used to check equivalence of noninterfering
programs. We report on a prototype that can prove non-interference of NVIDIA CUDA programs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Checking Equivalence of SPMD Programs Using Non-Interference∗

Stavros Tripakis Christos Stergiou Roberto Lublinerman
University of California, Berkeley Pennsylvania State University

chster,stavros@eecs.berkeley.edu rluble@psu.edu

January 29, 2010

This work is dedicated to the memory of Amir Pnueli.

Abstract

We study one of the basic multicore and GPU programming models, namely, SPMD (Single-Program
Multiple-Data) programs. We define a formal model of SPMD programs based on interleaving threads
that manipulate global and local arrays, and synchronize via barriers. SPMD programs are written
with the intention to be deterministic, although programming errors may result in this not being true.
SPMD programs are also frequently modified toward optimal performance. These facts motivate us
to develop methods to check determinism and equivalence. A key property in achieving this is non-
interference, formulated as validity of logical formulas automatically derived from the program, that
imply determinism. Automatically derived post-conditions can be used to check equivalence of non-
interfering programs. We report on a prototype that can prove non-interference of NVIDIA CUDA
programs.

1 Introduction

Writing correct programs has always been difficult, and a large part of computer science research is devoted
in developing methods to assist programmers in this task. Recently, the surge of parallel computing archi-
tectures such as multicores has brought with it hopes to go beyond the limits of Moore’s law, but also worries
that programming will become harder [5].

One of the reasons why parallel programming is difficult, is that parallel architectures often use a
multi-threaded, shared-memory, interleaving-based programming model. This results in inherently non-
deterministic behavior, which is hard to understand and debug. This has led some researchers to claim
that threads should be avoided [23, 19]. Other concurrency models, such as Kahn Process Networks [16],
ensure deterministic results despite process interleaving. Unfortunately, most multiprocessor architectures
widely used today do not follow such models, and use threads instead. What is worse, the semantics of these
architectures are often ambiguous and not well-documented, and execution sometimes yields unexpected
results [29].

The goal of this paper is to develop methods that help programmers build correct multi-threaded pro-
grams, and in particular programs running on modern graphics processing units (GPUs), such as the NVIDIA

∗This report is an updated version of [20], with major addition Section 7, reporting on a prototype implementation and
providing preliminary ideas on how to handle loops. Thanks to Carlos Coelho for useful discussions. Part of this work was
done at Cadence Research Labs. This work is supported by the Center for Hybrid and Embedded Software Systems (CHESS)
at UC Berkeley, which receives support from the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET) and
#0720841 (CSR-CPS)), the U.S. Army Research Office (ARO #W911NF-07-2-0019), the U.S. Air Force Office of Scientific
Research (MURI #FA9550-06-0312), the Air Force Research Lab (AFRL), the State of California Micro Program, and the
following companies: Agilent, Bosch, Lockheed-Martin, National Instruments, Thales and Toyota.

1

GeForce 8 Series. GPUs enjoy great popularity today, as a result of offering great computing power at rel-
atively low cost [28]. Motivated by this, we consider the CUDA programming model [2], used in NVIDIA’s
GPUs.

CUDA is based on the Single Program, Multiple Data (SPMD) parallel computation model, where
concurrent threads execute the same code, although they may not follow exactly the same execution path.
CUDA is free from some of the plagues of parallel programming: for instance, it does not provide locks
explicitly (although it does provide barrier synchronization). On the other hand, GPU programming is
difficult because of another reason. A “naive” parallel implementation of a given algorithm is in most cases
non-optimal in terms of run-time, i.e., runs too slow. Thus, a significant effort is spent trying to optimize the
program to achieve better performance [28]. This is done by exploiting the particularities of the architecture.
Although no general rule exists, it is often the case that global-memory accesses are very expensive and thus
need to be reduced to a minimum so that they do not create a bottleneck. Moreover, memory bandwidth
often depends on how memory is accessed, that is, on the memory access patterns. Subtle modifications in
such patterns can result in orders-of-magnitude performance improvements [28, 2].

Optimizing the program is done by transforming it so that it uses the specifics of the underlying platform
optimally. Currently, these transformations are done “manually”, since automating them is beyond the
reach of state-of-the-art compilers. Although methodologies and guidelines exist to help programmers (e.g.,
coalesced global memory access [28, 2]), these are fairly general and leave a large gap which must be filled by
the programmer’s creativity and care. This is a difficult and error-prone task (a simple example is provided
in this paper).

In this paper we propose methods to make this task error-free. In particular, methods that allow the
programmer to check equivalence of two programs: the program before the transformation and the one after
the transformation. This does not guarantee correctness of the programs per se. However, the original
program is usually a straightforward parallel implementation of the algorithm, thus, it is easier to check
that this original program is correct. Then, checking equivalence is enough to guarantee correctness of the
optimized versions as well.1

After studying publicly available CUDA programs [2], it has come to our attention that these programs
are written to be deterministic, in the sense that their final result does not depend on the interleaving order.
It is not surprising for programmers to want to write deterministic programs. However, determinism by no
means comes for free in CUDA. It is achieved by ensuring that concurrent threads are non-interfering, in
terms of the variables they read and write. Non-interference turns out to be a key property in our study,
the main contributions of which are the following:

First, we introduce a simple formal model for SPMD programs. Second, we formally define determinism
and equivalence of such programs. Third, we propose a formal notion of non-interference and show that it is
a sufficient condition for determinism. Fourth, we propose a method to check equivalence of non-interfering
programs. Our definition of non-interference, as well as the method to check equivalence, rely on checking
validity of logical formulas that can be automatically derived from the program. Finally, we illustrate our
methods throughout the paper using a parallel program performing array inversion, coming from the CUDA
benchmark suite.

2 Related work

Checking program equivalence for sequential programs has been studied in [31, 12]. There is a large body of
research on checking correctness of parallel programs (e.g., see [14, 21, 24, 17, 18, 22] and [27] for a survey of
more recent work). In fact, much of the work in formal verification techniques such as model checking [26, 9]
has been in part motivated by the additional complexity due to concurrency.

Most of this research, however, deals with quite general versions of the verification problem, in terms of
either the model used (for instance, general threads synchronizing with locks or similar mechanisms), or the
properties that need to be checked (which can be specified, for instance, using some general formalism such as

1 Similar equivalence checking methods are part of the standard flow in circuit design, as well as in more recent methodologies
such as model-based design (e.g., refining a Simulink floating-point model to a fixed-point model).

2

temporal logic [21]). In contrast, the SPMD model we use in this paper is restricted (for instance, there are
no locks, only barrier synchronization), and we focus on specific properties: non-interference, determinism
and equivalence.

The interference-free property used in the proof framework of [24] is weaker than ours. Ours essentially
guarantees absence of races, where two or more threads access the same memory location and at least
one access is a write. Races have been heavily studied in the context of programs with synchronization
mechanisms such as locks. Many techniques to detect races that are not “protected” by locks have been
proposed, both static (e.g., see [3, 15]) and dynamic (e.g., see [30]). [11] observes that this notion of races does
not capture all problematic interactions among threads, and proposes the stronger non-interference property
of atomicity, in the context of ConcurrentJava [3]. The fact that many parallel programs are written to be
deterministic has been observed by other researchers as well (e.g., see [27]). Currently, attempts are being
made to bring determinism to mainstream object-oriented languages (e.g., Deterministic Parallel Java [6]).

[32, 25, 34] study verification of MPI programs [1]. MPI is based on message-passing communication
and is thus different from the SPMD model that we study in this paper, which uses shared memory. [32]
are interested in checking equivalence of a parallel MPI program with a sequential program. Here we are
interested in checking equivalence of parallel SPMD programs.

Non-interference is a prominent notion in computer security (e.g., see [13]), but the interpretation there
is usually that information does not flow from confidential data to public data.

Non-interference has received a lot of attention in the parallel compilation community, in particular under
the general problem of data dependency analysis for arrays (e.g., see [35]). The major difference of this body
of work with ours is that, in parallel compilation, the problem is how to extract parallelism from a sequential
piece of code (with loops manipulating arrays, etc.), whereas here, the parallelization has been performed
by the programmer, and our objective is to prove that the parallel code is non-interfering.

In model-checking, there is a large body of work on how to alleviate state-explosion, by eliminating redun-
dant interleavings using partial-order reduction (e.g., see [33, 10]), or by exploiting symmetries (e.g., see [8]).
However, the goal there is not to use non-interference to statically ensure determinism and equivalence.

[4] proposes a method to check the barrier-based synchronization patterns of SPMD programs. Incorrect
barrier synchronization may occur when barriers are executed conditionally. This problem does not arise in
our model where barriers are assumed to be unconditional.2

3 Background: the CUDA programming model

There are obviously many different types of concurrent programs, depending on the parallel architectures
that these programs are meant to run upon, and the programming model that they use. In order to
facilitate understanding of the formal model we present in Section 4, we provide here a short description,
with examples, of the CUDA model, which has motivated this work.
Parallel architecture:

CUDA programs are meant to run on a GPU, which typically consists of a host, which is a traditional CPU,
and one or more compute devices, which are massively data-parallel co-processors. Each device consists of a
set of cores plus some global memory, which can be accessed by all cores. Each core consists of a processing
element (a processor) plus some local memory.
CUDA programs:

We consider in this paper a simple class of CUDA, where a program consists of three parts:

global array declarations;
thread function declaration;
thread spawning;

2 [2] states that “ syncthreads() is allowed in conditional code but only if the conditional evaluates identically across the
entire thread block, otherwise the code execution is likely to hang or produce unintended side effects.” Conditional barriers
appear in only 3 out of 57 examples included in the CUDA SDK.

3

The first part consists of a list of declarations of arrays. Memory for these arrays is to be allocated into the
global memory space of the multi-core device. The second part declares a thread function, to be executed
by each thread that will be spawned on the device. Each thread function is a piece of sequential code similar
to a C function. The third part consists of a command specifying how many threads to spawn. CUDA
programs are more general, in the sense that they are general sequential programs (e.g., written in C) where
thread spawning commands can appear anywhere in the code. For simplicity, in this paper we consider the
restricted class above.

An example of a CUDA program is given below.

// global array declaration
float A[1024], B[1024];

// thread function declaration
void reverse1(float* Out, float* In, int M)
{
int i = noThreads * coreId + threadId;
Out[M-1-i] = In[i];

}

// thread spawning
reverse1 <<<1024>>> (B, A, 1024);

The program declares two arrays A and B: they are to be stored in the global memory of the device. Then
the thread body is declared as function reverse1, where: argument M is the size of the arrays; noThreads,
coreId and threadId are parameters (number of threads per core, core id, and thread id, respectively), to
be instantiated upon execution, for each thread.3 The third part of the program specifies that K = 1024
threads must be spawned. Conceptually, a programming model such as CUDA gives the programmer the
impression that the number of available cores is unbounded, thus, K can be arbitrarily large. If the number
of threads per core (noThreads) is T , then conceptually C = dK

T e = noCores cores are required to run the
program.4

Transforming the program to optimize performance:
The array reversal application can be rewritten as follows (for simplicity, we assume K = C · T):

void reverse2(float* Out, float* In)
{
float Loc[noThreads];
int i = coreId * noThreads + threadId;
int j = (noCores-1-coreId) * noThreads + threadId;
int k = noThreads - 1 - threadId;
Loc[threadId] = In[i];
__syncthreads();
Out[j] = Loc[k];

}

The main idea is to split the tasks performed by the threads in two phases. In Phase 1, threads read from the
input global array and store values in a local-memory array Loc. A separate instance of Loc is allocated at

3 In CUDA, a core is called a block and the set of cores is called a grid. Blocks are conceptually arranged in the grid as a one-,
two-, or three-dimensional array. Thus, the index of a block can be up to 3-dimensional: parameters blockIdx.x, blockIdx.y,
etc., are used for this purpose. Similarly, threads in a block are also conceptually arranged in 1D, 2D, or 3D arrays. This
facilitates programming with 2D and 3D objects that are frequently used in computer graphics. For simplicity, we consider
single-dimensional indices in this paper. However, our approach directly extends to multi-dimensional indices as well.

4 In practice, the number of cores in a given device may be smaller than dK
T
e. Different policies could be used in such a

case. One such policy is to partition the set of threads into groups, such that each group is enough to run on the available set
of cores. Then the groups are executed in sequence.

4

each core. In Phase 2, threads copy from Loc to the output global array, and in the process of doing so also
reverse the order of the values. The syncthreads (barrier synchronization) command ensures that Phase
1 is complete when Phase 2 starts. The new program achieves better performance than the first version,
because threads access global memory (array B) in a so-called coalesced manner: see [28, 2] for details.

Looking at reverse2, it is not immediately obvious that it correctly implements array-reversal, or in
other words, that it is equivalent to the “naive” version reverse1. In fact, even in such a simple application,
the indices i,j,k used by reverse2 are sufficiently complex to require time to understand the logic behind
the rewriting. This process is tedious and error-prone. The goal of this paper is to provide tools to ensure
that nothing goes wrong, that is, that reverse2 is equivalent to reverse1.

4 A formal model of SPMD programs

In this section we provide a formal model for SPMD programs. This model, although inspired by the
CUDA programming model, is independent and can be used in other similar contexts as well. For reasons
of simplicity in exposition, our formal model makes a number of assumptions, such as acyclicity of programs
(no loops). Loops are handled by our implementation as discussed in Section 7.

A SPMD program is defined to be a tuple

P = (G,L, F)

where G is a list of global array names, each with a type and size. L is a list of local array names, each
with a type and size. F is an automaton formalizing the thread function of the program, as described
below. A type is a basic type such as boolean, integer, real. The size of an array A, denoted sz(A), is an
arithmetic expression involving constants or special pre-defined parameters C (number of processing cores)
and T (number of threads per core). (In the CUDA code shown in Section 3, C and T are represented by
noCores and noThreads, respectively.) Given an array symbol A, the size of A is denoted sz(A) ∈ N.

The automaton F modeling a thread function is a tuple

F = (Q, q0, R)

where Q is a finite set of locations (the “control states” of the automaton). q0 ∈ Q is the initial location.
R is a set of program transitions. A program transition is a tuple (q, q′, α), also denoted q

α→ q′, where
q, q′ ∈ Q are the source and destination locations, respectively, and α is either a condition statement, or an
assignment statement, or the special sync statement, as described below. A program transition labeled with
a condition (resp., assignment) statement is called a condition (resp., assignment) transition. A program
transition labeled with sync is called a sync transition.

Note that although our model does not contain explicit local (i.e., per thread) variables, these can be
easily modeled using local arrays.

An expression can be of the following forms: a constant, such as 0, 1.5, true, and so on; one of the
pre-defined parameters C, T, b (representing the index of the core that a given thread is running on, and
ranging from 0 to C − 1) and t (representing the local index of a thread in its core, and ranging from 0 to
T− 1); an arithmetic expression of the form e+ e′, e− e′, etc.; a boolean expression of the form e > e′, e∧ e′,
etc.; or an array expression of the form A[e], where A is an array name in G or L, and e is an arithmetic
expression of integer type. In the CUDA code shown in Section 3, b and t are represented by coreId and
threadId, respectively.

A condition statement is a boolean expression. An assignment statement has the form l := e, where e is
an expression and l is an array expression.

Let us provide an example of an SPMD program. This example models an array reversal program.
We first model the “naive” version of the program (with function “reverse1”, see Section 3) as a tuple
P1 = (G,L1, F 1), with G = {A[C · T], B[C · T]}, L1 = ∅ (no local arrays), and F 1 being the automaton
shown in Figure 1 (top). A[C · T] denotes an array of length C · T (in this case both arrays A and B are

5

B[C · T − 1 − T · b − t] := A[T · b + t]

Loc[t] := A[T · b + t] sync B[(C − 1 − b) · T + t] := Loc[T − 1 − t]

Figure 1: Thread automata F 1 (top) and F 2 (bottom).

unidimensional). The program implements the parallel assignment B[i] := A[M − 1− i], for i = 0 to M − 1,
where M = C · T. Index i is implemented by the expression T · b + t.

A second, optimized version of the program (using function “reverse2”, see Section 3) can be modeled
as a tuple P2 = (G,L2, F 2), with G same as for P1, L2 = {Loc[T]}, and F 2 being the automaton shown in
Figure 1 (bottom).

It is not at all trivial to see that the alternative implementation is equivalent to the original implemen-
tation of array reversal, that is, produces the same output array B for any input array A. Our goal in this
paper is to devise methods to check that the two SPMD programs are indeed equivalent.
Structural Assumptions:

Let P = (G,L, F) be a SPMD program. We assume that F is deterministic, that is, there is no location
q ∈ Q such that q has more than one outgoing assignment transitions, or both assignment transitions and
condition transitions.

We also assume that F is structurally deadlock-free, i.e., for every location q, if all outgoing program
transitions from q are labeled with conditions, then the union of these conditions is equivalent to true.

We also assume that F is acyclic, i.e., there is no sequence of program transitions leading from a given
location q to itself. This and the fact that Q is finite implies that some locations will have no outgoing
program transitions. We call these locations final. We can assume, without loss of generality, that there is
a single final location.

We finally assume that the structure of F is as illustrated in Figure 2, namely, F is a chain of k sub-
automata, linked with sync transitions. We denote this as F = F1 → F2 → · · · → Fk. Each sub-automaton
Fi has no sync transition. Also, each Fi where i < k has a unique location qs and a unique sync transition
(qs, q′s, sync), such that q′s is the “initial” location of Fi+1. We call each Fi a sync-segment. In the examples
of Figure 1, F 1 consists of a single sync-segment since it contains no sync statement. F 2 consists of two
sync-segments.

...

sync sync sync

Figure 2: Structure of a thread automaton.

We classify global and local array symbols as input or output. A global array A is an input array if it is
not written at all in F , that is, there is no assignment transition in F of the form A[e] := e′. A is an output
array if it is not read at all in F , i.e., there is no assignment transition in F of the form e := e′ such that A
appears in e′. We assume that all global arrays can be classified either as input arrays, or as output arrays,
but not both. A local array B is classified as input or output with respect to a given sync-segment Fi: B
is an input array in Fi if B is not written at all in Fi; B is an output array in Fi if it is not read at all in
Fi. For checking equivalence, we will assume that a local array B can be either an input array or an output
array in Fi, but not both. Note that B can still be an input array in Fi and an output array in Fj if j 6= i.
Also note that we do not need the above assumption for checking non-interference (Section 6). For example,
in both F 1 and F 2 (Figure 1) global array A is an input array and global array B is an output array. Local

6

array Loc is an input array in the first sync-segment of F 2 and an output array in the second sync-segment
of F 2.
Instantiation and Semantics:

A SPMD program, although it refers to parameters C and T, does not instantiate these parameters.
Indeed, in principle, a SPMD program should be written independently of the actual values of these param-
eters, and should work correctly in any instantiation. An instance of a SPMD program P = (G,L, F) is
represented as a tuple (P,C, T), where C, T ∈ N are two positive integers, representing the instantiation of
parameters C and T, respectively. In a SPMD program instance (P,C, T), there are in total C · T threads
running concurrently, each executing the sequential program described in F . The set {0, 1, ..., C · T − 1} is
called the set of global thread indices for (P,C, T), denoted I(C, T).

In a SPMD program instance (P,C, T), there is a single copy of every global array A ∈ G. On the other
hand, each local array B ∈ L is instantiated C times, representing the fact that there is one copy of B
allocated at each core. Elements of an array A are indexed from 0 to sz(A,C, T)−1, where sz(A,C, T) is the
integer number obtained by replacing, in sz(A), C by C and T by T , and evaluating the resulting expression.

Consider an expression e: it generally involves global or local memory array symbols, constants, and
the parameters C,T, b, t. By fixing these parameters to concrete positive integer values C, T, b, t, we get a
parameter-free expression, that is, an expression involving only array symbols and constants. We denote this
parameter-free expression, obtained by substituting concrete values to the parameters, by e(C/C,T/T, b/b, t/t),
or e(C, T, b, t) in short.

The semantics of a SPMD program instance (P,C, T), denoted [[P,C, T]], is defined to be a labeled
transition system (LTS) [[P,C, T]] = (S, S0,→) where:

S is the set of states. Each state s ∈ S is a partial function that assigns a value to each element
of every global array A ∈ G, to each element of every instance Bk of every local array B ∈ L, where
k ∈ {0, 1, ..., C − 1}, and to every instance of a program counter variable pct ∈ Q, which records the location
of thread n, where n ∈ I(C, T). States are partial functions because some arrays may not be initialized
(however, we will enforce initialization below). We will denote by s(v), s(pcn), s(A[i]), etc., the values of v,
pc, A[i], etc., in state s. If s(pcn) is the final location for all n ∈ I(C, T), then s is called a final state.

S0 ⊆ S is the set of initial states. For each s ∈ S0, and for every n ∈ I(C, T), we have: s(pcn) = q0. Also,
every array in G (resp., L) assumes one of the possible values in G0 (resp., L0). Array elements can have
arbitrary initial values, however, we will assume that local arrays are guaranteed to be initialized during
execution (see below).

→ is a set of labeled transitions. Each transition is a triplet (s1, β, s2), also denoted s1
β→ s2, where s1, s2

are states and β is either sync, or a pair (n, α), where n ∈ I(C, T) and α is a condition or an assignment.
Given a state s and a parameter-free expression e, s(e) denotes the value of e at state s: this is the

value obtained by replacing all sub-expressions A[j] of e by s(A[j]) and performing any arithmetic or logical
operations in e. We say that a boolean expression e is satisfied at s if s(e) evaluates to true.

When e is not parameter-free, its evaluation generally depends not only on the state s, but also on the
global thread index n ∈ I(C, T) (as well as the values C and T , of course). Given n ∈ I(C, T), define b(n)
and t(n) to be the quotient and the remainder of the division n

T , respectively:

n = b(n) · T + t(n). (1)

Let us now define the rules for the transitions of the LTS [[P,C, T]]. First, consider the case s1
n,α→ s2,

where n ∈ I(C, T). In this case we adopt the usual interleaving semantics, where only thread n moves and
all other threads remain at the same location. Let pci = si(pcn), for i = 1, 2. Then, F must have a program
transition (pc1, pc2, α) and one of the following must hold:

• Either α is a condition e and the parameter-free expression e(C, T, b(n), t(n)) is satisfied at state s1.
In this case, the values of all variables, except pcn, remain the same in s2 as in s1.

• Or α is the assignment l := e where l is some array expression A[e′]. Let v = s1(e(C, T, b(n), t(n))),
i.e., v is value that e assumes in s1 when evaluated by thread n. Let j = s1(e′(C, T, b(n), t(n))). Then
s2 is identical to s1, except that the value of array element A[j] in s2 is set to v, and s2(pcn) = pc2.

7

Second, consider the case s1
sync→ s2. In this case all threads synchronize and move simultaneously. Then,

F must have a transition (pc1, pc2, sync), such that ∀n ∈ I(C, T) : s1(pcn) = pc1 ∧ s2(pcn) = pc2. (Notice
that, because we assume that the thread automaton is a “chain” of sub-automata linked by sync transitions,
it is not possible for different threads to synchronize while being at different locations.) The value of all
other variables except program counters remains unchanged.

Our semantics assumes that assignments are atomic, that is, they cannot be interrupted by other threads.
This assumption may seem unrealistic, especially in cases where the expressions involved in the assignment
are long (i.e., require many computation steps), involve accesses to global memory, etc. It is true that in such
cases execution of these assignments may not be atomic. This problem can be overcome, however, during
the modeling phase: thread automata are only a modeling formalism, not a programming language. When
translating from a programming language (e.g., such as CUDA) to thread automata, care can be taken to
“split” non-atomic statements into sequences of atomic ones.

A run in the LTS [[P,C, T]] is a sequence of k ≥ 0 transitions, starting at an initial state:

ρ = s0
β1→ s1

β2→ · · · βk→ sk,

where s0 ∈ S0, and si
βi→ si+1 is a transition of [[P,C, T]], for i = 0, ..., k − 1. We say that the run ρ reaches

state sk and sk is called a reachable state. The set of all reachable states of P with respect to C, T is denoted
R(P,C, T). The run ρ is called maximal if sk is a final state. The set of all reachable final states of P
with respect to C, T is denoted Rf (P,C, T). Note that every run in [[P,C, T]] is finite: this follows from
the assumption that F is acyclic. On the other hand, the sets R(P,C, T) and Rf (P,C, T) may be infinite,
because the domains of state variables (arrays) may be infinite.
Assignment Assumptions:

Let ρ = s0
β1→ s1

β2→ · · · βk→ sk be a run in the LTS [[P,C, T]] and let A be a global or local array of P .
Let i ∈ {1, ..., k} and let j ∈ {0, ..., sz(A,C, T) − 1}. We say that the j-th element of A is written in the
i-th transition of ρ, if βi = (n,A[e] := e′) and si−1(e(C, T, b(n), t(n))) = j. We say that the j-th element
of A is read in the i-th transition of ρ, if βi = (n, l := e) and e contains a sub-expression A[e′] such that
si−1(e′(C, T, b(n), t(n))) = j.

We assume that [[P,C, T]] satisfies the local array initialization (LAI) property. Intuitively, LAI states
that every local array element is initialized before used. This means that every element of the array is
written (by some thread) before the same element is read (by the same or possibly some other thread).
This assumption is semantical: it must hold in every possible execution of the program. Formally, this is
expressed as follows. Let ρ = s0

β1→ s1
β2→ · · · βk→ sk be a run in the LTS [[P,C, T]] and let A be a local array

of P . Then, if there exists j ∈ {0, ..., sz(A,C, T) − 1} and i ∈ {1, ..., k} such that A[j] is read in the i-th
transition of ρ, then there exists some ` ∈ {1, ..., i− 1} such that A[j] is written in the `-th transition of ρ.

We also assume that [[P,C, T]] satisfies the single array assignment (SAA) property. Intuitively, SAA
states that every element of a global or local output array is assigned exactly once in every execution of the
system. Formally, this is expressed as follows. Let ρ = s0

β1→ s1
β2→ · · · βk→ sk be a run in the LTS [[P,C, T]] and

let A be a local or global array of P . If A is not a global input array, then for all j ∈ {0, ..., sz(A,C, T)− 1},
there must be exactly one i ∈ {1, ..., k} such that A[j] is written in the i-th transition of ρ.

The above assumptions are not generally guaranteed by our SPMD model. They can be enforced, however,
by conditions similar to the non-interference condition presented in Section 6. The details are omitted due
to lack of space.

5 Properties of interest

Our ultimate goal is to provide a method for proving equivalence of SPMD programs. But what does
equivalence exactly mean? For sequential programs, which are deterministic, it is reasonable to define
equivalence as follows: programs P1 and P2 are equivalent if, given the same inputs, they produce the
same outputs. This definition does not directly apply to SPMD programs, because the latter are inherently

8

non-deterministic: the outputs of a SPMD program may be different depending on the particular order of
thread interleavings. We are thus motivated to define determinism first, and then define equivalence for
deterministic programs.

We must also define precisely what we mean by “inputs” and “outputs”. Usually, in GPU applications,
one is not interested in the values of local arrays or other local variables, but only in the values of global arrays.
Motivated by this, we introduce the following equivalences. Consider a SPMD program P = (G,L, F). Let
[[P,C, T]] = (S, S0,→), for given C, T ∈ N. Two states s, s′ ∈ S are said to be equivalent, denoted s ≈ s′, if for

each A ∈ G, for any i ∈ {0, ..., sz(A,C, T)− 1}, s(A[i]) = s′(A[i]). Let ρ1 = s10
β1
1→ s11

β1
2→ · · ·

β1
k1→ s1k1

and ρ2 =

s20
β2
1→ s21

β2
2→ · · ·

β2
k2→ s2k2

be two runs in [[P,C, T]]. The two runs are said to be equivalent, denoted ρ1 ≈ ρ2, if
s10 ≈ s20 ⇒ s1k1

≈ s2k2
, that is, assuming all global arrays have the same value when the programs begin, they

will have the same value when the programs end. The two runs are said to be strongly equivalent, denoted
ρ1 ' ρ2, if s10 = s20 ⇒ s1k1

= s2k2
.

The above definitions extend to state of two LTSs coming from different SPMD programs P1 and P2,
with potentially different instantiations of parameters C,T, as long as P1 and P2 have the same set of global
arrays. We will use this to define equivalence between SPMD programs below. For simplicity, we will assume
that P1 and P2 have identical sets of input and output global arrays: that is, array A is an input (resp.,
output) array in P1 iff it is an input (resp., output) array in P2. We will also assume that parameters C,T
are instantiated identically in the two programs. Both assumptions can be lifted without compromising the
results of our framework, however, this would make the presentation heavier, and we opt for simplicity.
Determinism:

Let P be a SPMD program and let C, T ∈ N. P is said to be deterministic with respect to C, T if for any
two maximal runs ρ and ρ′ in [[P,C, T]], we have ρ ≈ ρ′. If ρ ' ρ′ then P is said to be strongly deterministic
with respect to C, T . P is said to be deterministic (respectively, strongly deterministic) if it is deterministic
(respectively, strongly deterministic) with respect to C, T , for any C, T ∈ N.
Program Equivalence:

Let P1 = (G,L1, F1) and P2 = (G,L2, F2) be two SPMD programs with identical sets of global arrays.
Let C, T ∈ N. P1 and P2 are said to be equivalent with respect to C, T , denoted P1 ≈C,T P2, if (1) P1 is
deterministic with respect to C, T , (2) P2 is deterministic with respect to C, T , and (3) for all maximal runs
ρ1 in [[P1, C, T]] and ρ2 in [[P2, C, T]], we have ρ1 ≈ ρ2. Let Γ be a subset of N, representing a set of conditions
on parameters C, T . We say that P1 and P2 are equivalent with respect to Γ, denoted P1 ≈Γ P2, if for all
(C, T) ∈ Γ, we have P1 ≈C,T P2.

6 Analysis

Our goals are the following: (1) to check whether a given SPMD program is deterministic, and (2) to check
whether two deterministic SPMD programs are equivalent. A key property in achieving these goals is non-
interference, which roughly states that different threads access different array elements, or the same element
but at different times.
Non-Interference:

In the system [[P,C, T]], there are C · T threads running, where C is the number of cores and T the
number of threads per core. All these threads may access the same locations of global memory. Moreover,
for each core, the T threads running on that core may access the same location of local memory of this core.
To ensure determinism, we need to ensure that no race conditions occur in these global or local memory
accesses. Race conditions can occur when two threads access the same memory location, at least one access
is a write, and the two accesses may happen in any order. Non-interference ensures that race conditions do
not occur.

Let F be the thread automaton on which we wish to ensure absence of race conditions like the above.
Because of the chain-of-sub-automata assumption (Figure 2), it suffices to ensure the absence of race con-
ditions separately on each sync-segment Fi of F . Indeed, from the fact that threads must synchronize on

9

sync transitions, it is impossible for two sync-segments Fi, Fj with i 6= j to interfere: if i < j then, in any
execution, all transitions of Fi are guaranteed to take place before any transition of Fj .

Thus, it suffices to check, for each sync-segment Fi of F , that it cannot interfere with itself. In other
words, that we cannot have two threads executing statements of Fi that interfere with each other. Notice
that Fi is a special case of a thread automaton, without sync transitions, except for the transition from Fi

to the next sync-segment Fi+1. Then, let Fi be the thread automaton (Q, q0, R).
We define the following two sets of expressions:
LHS(Fi), called the set of all left-hand side expressions of Fi, is defined to be the set of all expressions l

such that l := e is some assignment statement of Fi.
RHS(Fi), called the set of all right-hand side expressions of Fi, is defined to be the set of all array

sub-expressions of an expression e, such that either l := e is some assignment statement of Fi or e is some
condition statement of Fi. An array sub-expression of e is a sub-expression of e which is also an array
expression. For example, if e = A[3 +B[t]] then e has two array sub-expressions: e itself and B[t].

LHS only contains array expressions, since, by definition, in every assignment l := e, l is an array
expression. The reason we include only array expressions in RHS is because only array expressions can be
assigned to, thus, only such expressions can interfere with each other. Although we could have included all
sub-expressions in RHS without affecting the results given below, this would result in redundant expressions
in RHS. Note that LHS and RHS are finite sets.

Let us illustrate the definitions of LHS and RHS on our running example. First, consider thread automaton
F 1 (Figure 1, top). F 1 has no sync transitions, therefore, it consists of a single sync-segment: F 1 itself. We
have:

LHS(F 1) = {B[C · T− 1− T · b− t]} and RHS(F 1) = {A[T · b + t]}.

Next, consider thread automaton F 2 (Figure 1, bottom). F 2 consists of two sync-segments: F 2 = F 2
1 → F 2

2 .
We have:

LHS(F 2
1) = {Loc[t]}, RHS(F 2

1) = {A[T · b + t]},
LHS(F 2

2) = {B[(C− 1− b) · T + t]}, RHS(F 2
2) = {Loc[T− 1− t]}.

We next define two set of potentially interfering expression pairs of Fi. The set Eg(Fi) is defined to
be the set of all (e1, e2) such that there exists global array symbol A ∈ G such that A[e1] ∈ LHS(Fi) and
A[e2] ∈ LHS(Fi) ∪ RHS(Fi). The set El(Fi) is defined to be the set of all (e1, e2) such that there exists
local array symbol B ∈ L such that B[e1] ∈ LHS(Fi) and B[e2] ∈ LHS(Fi) ∪ RHS(Fi). The intuition is that
two threads interfere iff there exists a pair of potentially interfering expressions (e1, e2) such that e1 and
e2 evaluate to the same value in the two threads. Notice that we need not worry about expressions of the
form A[e1] ∈ LHS(Fi) and B[e2] ∈ LHS(Fi) ∪ RHS(Fi), where A and B are different array symbols. This is
because, even if e1 and e2 can be made equal, A and B refer to different locations in memory, thus, there is
no possibility for races.

Let F be a thread automaton such that F = F1 → · · · → Fk. Fix C, T ∈ N. We say that a sync-segment
Fi is non-interfering with respect to C, T if

1. for every expression pair (e1, e2) ∈ Eg(Fi), the following formula is valid:

∀b1, b2 ∈ {0, ..., C − 1},∀t1, t2 ∈ {0, ..., T − 1} :(
b1 6= b2 ∨ t1 6= t2

)
⇒ e1(C, T, b1, t1) 6= e2(C, T, b2, t2)

2. for every expression pair (e1, e2) ∈ El(Fi), the following formula is valid:

∀b ∈ {0, ..., C − 1},∀t1, t2 ∈ {0, ..., T − 1} : t1 6= t2 ⇒ e1(C, T, b, t1) 6= e2(C, T, b, t2)

The above formulas are formulas of first-order logic with equality, with array symbols considered to be unary
function symbols.

We say that F is non-interfering with respect to C, T if for all i ∈ {1, ..., k}, Fi is non-interfering with
respect to C, T . We say that Fi is non-interfering if it is non-interfering with respect to C, T for all C, T ∈ N.
We say that F is non-interfering if for all i ∈ {1, ..., k}, Fi is non-interfering.

10

Theorem 1 Let P = (G,L, F) be a SPMD program and let C, T ∈ N. If F is non-interfering w.r.t. C, T
then P is strongly deterministic with respect to C, T .

Proofs can be found in Appendix A.
Let us apply Theorem 1 to show that the SPMD program of Figure 1 (top) is deterministic. The sets

LHS(F 1) and RHS(F 1) have been given above. According to the definition above, Eg(F 1) = {(e, e)}, where e
is C ·T− 1− b ·T− t, and El(F 1) = ∅. To show non-interference, we must prove that for all C, T ∈ N, for all
b1, b2 ∈ {0, ..., C − 1} and for all t1, t2 ∈ {0, ..., T − 1} such that b1 6= b2 or t1 6= t2, the following inequality
holds:

C · T − 1− (b1 · T + t1) 6= C · T − 1− (b2 · T + t2).

This follows directly from the assumptions. Similarly, we can show that the alternative array-reversal
program P2 with thread automaton F 2 is also non-interfering. F 2 consists of two sync-segments, F 2

1 and F 2
2 .

Following the definitions, we get: Eg(F 2
1) = ∅, El(F 2

1) = {(t, t)}, Eg(F 2
2) = {(e, e)}, where e is (C−1−b)·T+t,

and El(F 2
2) = ∅. Then, to prove that F 2 is non-interfering, we show the two facts: t1 6= t2 ⇒ t1 6= t2, and

∀C, T ∈ N : ∀b1, b2 ∈ {0, ..., C − 1},∀t1, t2 ∈ {0, ..., T − 1} :
(b1 6= b2 ∨ t1 6= t2) ⇒ (C − 1− b1) · T + t1 6= (C − 1− b2) · T + t2.

It is instructive to consider a third implementation of array reversal, which does not satisfy the non-
interference property. This happens if we remove the sync statement from thread automaton F 2: call the
resulting thread automaton F 3. F 3 has a single sync-segment (itself) and we have:

LHS(F 3) = {Loc[t], B[(C− 1− b) · T + t]}, RHS(F 3) = {A[b · T + t], Loc[T− 1− t]}.

Then, El(F 3) includes the pair (t,T−1−t) and we can no longer prove the implication t1 6= t2 ⇒ t1 6= T−1−t2.
In fact, the implication can be shown to be false simply by setting t1 = 0 and t2 = T − 1. Thus, F 3 is
interfering. In fact, it can be seen that this implementation is non-deterministic, and incorrect.
Checking Equivalence:

Let P1 and P2 be two deterministic SPMD programs with identical sets of global arrays. Let Γ be a subset
of N2, representing a set of conditions on parameters C, T . We represent the set Γ ⊆ N2 by its characteristic
formula φΓ: the latter is a boolean expression on parameters C,T, such that a tuple (C, T) ∈ N2 is in Γ iff
it satisfies φΓ. We want to check whether P1 ≈Γ P2. We do this in two steps: (1) For each Pi, i = 1, 2, we
compute a post-condition ΦPi

. The latter is a formula that relates global and local array values at the end
of program execution. (2) We check whether the post-conditions imply equality of global output arrays. We
next make these steps precise and illustrate them on our running example.

Let P = (G,L, F) be a SPMD program. Let Π denote the set of all control-flow paths in F , that is, all
paths from the initial location q0 of F to some final location (recall that F is acyclic, therefore Π is a finite
set). For each π ∈ Π we will compute a boolean expression φπ. Let π = q0

α1→ q1
α2→ · · · αm→ qm. Each αi in π

is either a condition statement, that is, a boolean expression e, or an assignment l := e. Define ψi to be: e,
if αi is the condition e, and l = e if αi is the assignment l := e. Then, we define φπ to be the conjunction of
all ψi, and the post-condition of P , denoted ΦP , to be the disjunction of all φπ:

φπ :=
∧

i=1,...,m

ψi and ΦP :=
∨

π∈Π

φπ (2)

In all ψi, local array symbols are superscripted by b (e.g., Loc will appear as Locb). This is because there is
a separate copy of every local array at each core, and we need to refer to each copy individually.

Let us return to our running example of array reversal programs P1 and P2, with thread automata F 1

and F 2, respectively (Figure 1). The post-conditions for P1 and P2 are:

ΦP1 := B[C · T− 1− (b · T + t)] = A[b · T + t]
ΦP2 := Locb[t] = A[b · T + t] ∧ B[(C− 1− b) · T + t] = Locb[T− 1− t]

11

Theorem 2 Let P be a non-interfering SPMD program w.r.t. C, T ∈ N. For all s ∈ Rf (P,C, T), the
following formula is satisfied at state s:

∀b ∈ {0, ..., C − 1},∀t ∈ {0, ..., T − 1} : ΦP (C, T) (3)

In the above theorem, ΦP (C, T) denotes the formula obtained by replacing variables C,T in ΦP by
concrete values C, T .

Let P1 and P2 be two SPMD programs having the same set G of global arrays. Recall that P1 and P2

must have the same classification of global arrays into input and output arrays. Let Gout ⊆ G be the set of
output global arrays. For i = 1, 2, let φi be the post-condition formula ΦPi

, with the addition that array
symbols in Gout are labeled by superscript i. That is, B ∈ Gout will appear as B1 in φ1 and as B2 in φ2.
This is done to distinguish the outputs of the two programs. All local array symbols that are common to
both programs are also superscripted similarly. Input global array symbols do not need to be distinguished:
in fact, by having the same input symbols in both formulas, we implicitly encode the assumption that input
array values are the same for both programs.

We define formulas φpost and φout as follows:

φpost := ∀b ∈ {0, ...,C− 1},∀t ∈ {0, ...,T− 1} : φ1 ∧ φ2

φout :=
∧

B∈Gout

∀j ∈ {0, ..., sz(B)− 1} : B1[j] = B2[j]

We represent the set Γ ⊆ N2 by its characteristic formula φΓ: the latter is a boolean expression on
parameters C,T, such that a tuple (C, T) ∈ N2 is in Γ iff it satisfies φΓ.

Theorem 3 Suppose P1 and P2 are non-interfering SPMD programs, with respect to any C, T such that
(C, T) ∈ Γ. Then, P1 ≈Γ P2 if the following formula is valid:

∀C,T ∈ N :
(
φΓ ∧ φpost

)
⇒ φout (4)

Formula (4) instantiates on our running example as follows:

∀C,T ∈ N :
(
∀b ∈ {0, ...,C− 1},∀t ∈ {0, ...,T− 1} :
B1[C · T− 1− (b · T + t)] = A[b · T + t] ∧ Locb[t] = A[b · T + t] ∧
B2[(C− 1− b) · T + t] = Locb[T− 1− t]

)
⇒ ∀j ∈ {0, ...,C · T− 1} : B1[j] = B2[j]

(5)

A proof that Formula (5) is valid can be found in Appendix B.

7 Implementation and experiments

We have built a prototype tool that can automatically check non-interference of CUDA programs. Equiva-
lence checking has not been implemented yet in the tool, but the non-interference checking functionality is
useful independently, and not available in other tools, as far as we know at the time of writing.

Our tool uses CIL (http://hal.cs.berkeley.edu/cil/) to parse and analyze CUDA programs. The
tool then generates non-interference conditions that are submitted to the Yices SMT solver (http://yices.
csl.sri.com/). Yices cannot handle non-linear constraints, therefore, in expressions such as b ·T + t, where
b and t are the core and thread ID variables, respectively, and T is the number of threads per core, we
instantiate T to a constant. Our tool can handle multidimensional arrays.

At present our tool can run on the reverse1, reverse2 programs presented in this paper and on the
following programs from the CUDA SDK suite [2]: clock, nbody, simpleZeroCopy and transpose. All
these programs are proved non-interfering completely automatically in < 1 sec. Our tool currently handles
loops with statically known bounds by unrolling the loop. This works for the programs above but does not
work for all programs. For example, the BlackScholes CUDA application contains the following thread
function pattern:

12

http://hal.cs.berkeley.edu/cil/
http://hal.cs.berkeley.edu/cil/
http://hal.cs.berkeley.edu/cil/
http://yices.csl.sri.com/
http://yices.csl.sri.com/
http://yices.csl.sri.com/

const int tid = noThreads * coreId + threadId;
const int TN = noThreads * noCores;
for(int i = tid; i < N; i += TN)
BlackScholesBodyGPU(A[i], B[i], ...);

where tid is computed as the global thread index T · b + t, TN = C · T is the total number of threads, A,
B, ..., are arrays, N is the size of these arrays, and BlackScholesBodyGPU is the function the performs the
computation.

Such cases can be handled by adapting the non-interference conditions that need to be checked. In
particular, we can generate non-interference conditions of the form:

∀b1, b2 ∈ {0, ..., C − 1},∀t1, t2 ∈ {0, ..., T − 1},∀i1, i2 ∈ N :((
b1 6= b2 ∨ t1 6= t2

)
∧ (∃k1, k2 ∈ N : i1 = k1 · TN + t1 ∧ i2 = k2 · TN + t2 ∧ t1 ≤ i1 < N ∧ t2 ≤ i2 < N)

)
⇒ e1(C, T, b1, t1, i1) 6= e2(C, T, b2, t2, i2)

where i1, i2 are variables corresponding to the instantiation of the loop index i for the two threads, and
variables k1, k2 represent loop iterations. e1, e2 are left-hand or right-hand side expressions potentially using
variables i1, i2, in addition to variables C,T, and so on. Then, ej(C, T, bj , tj , ij), for j = 1, 2, denotes the
expression obtained by substituting the values of these variables, as described in Section 6.

It is worth noting that, in order to prove that the above non-interference condition is valid, it suffices to
prove that the following, quantifier-free formula, corresponding to its negation, is unsatisfiable:

0 ≤ b1, b2 < C ∧ 0 ≤ t1, t2 < T ∧
(
b1 6= b2 ∨ t1 6= t2

)
∧ i1 = k1 · TN + t1 ∧ i2 = k2 · TN + t2 ∧

t1 ≤ i1 < N ∧ t2 ≤ i2 < N ∧ e1(C, T, b1, t1, i1) = e2(C, T, b2, t2, i2)

Because such formulas are quantifier-free, they can be directly handled by SMT solvers. For instance, to
ensure that different threads don’t write to the same A[i] element in the BlackScholes example, it suffices
to prove unsatisfiability of the above formula, where e1(C, T, b1, t1, i1) = e2(C, T, b2, t2, i2) instantiates to
i1 = i2. Yices takes < 1 sec to prove the formula unsatisfiable for C = T = 256 and N = 2563.

8 Conclusions and ongoing work

We have proposed a novel framework for proving determinism and equivalence of SPMD programs. Our
framework relies on a notion of non-interference requiring that different threads access different array ele-
ments, or the same element but at different times (thanks to barrier synchronization).

We are currently working toward strengthening our tool so that it can handle a larger set of CUDA
programs. Another promising direction is to cast the framework in a theory of arrays. Even though features
such as array nesting (A[B[e]]) generally result in undecidability [7], we may be able to exploit the restricted
form of formulas used in our framework to obtain more positive results.

References

[1] Message-Passing Interface (MPI). See http://www.mcs.anl.gov/research/projects/mpi/.

[2] NVIDIA CUDA Programming Guide Version 2.0, 6/7/2008. At http://www.nvidia.com/cuda.

[3] M. Abadi, C. Flanagan, and S. Freund. Types for safe locking: Static race detection for Java. ACM
Trans. Program. Lang. Syst., 28(2):207–255, 2006.

[4] A. Aiken and D. Gay. Barrier inference. In 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’98), pages 342–354, 1998.

13

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

[5] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, E. Lee, N. Morgan,
G. Necula, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. The Parallel Computing
Laboratory at U.C. Berkeley: A Research Agenda Based on the Berkeley View. Technical Report
UCB/EECS-2008-23, EECS Department, University of California, Berkeley, Mar 2008.

[6] R. Bocchino, V. Adve, S. Adve, and M. Snir. Parallel programming must be deterministic by default.
In HotPar’09.

[7] A. Bradley, Z. Manna, and H. Sipma. What’s decidable about arrays. In VMCAI, LNCS 3855, pages
427–442. Springer, 2006.

[8] E. Clarke, E. Emerson, S. Jha, and A. Sistla. Symmetry reductions in model checking. In CAV’98,
pages 147–158. Springer, 1998.

[9] E.A. Emerson and E. Clarke. Design and synthesis of synchronization skeletons using branching-time
temporal logic. In Workshop on Logic of Programs. LNCS 131, 1981.

[10] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software. SIGPLAN
Not. (POPL’05), 40(1):110–121, 2005.

[11] C. Flanagan and S. Qadeer. A type and effect system for atomicity. SIGPLAN Not., 38(5):338–349,
2003.

[12] B. Godlin and O. Strichman. Inference rules for proving the equivalence of recursive procedures. Acta
Inf., 45(6):403–439, 2008.

[13] J.A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium on Security
and Privacy, pages 11–20, 1982.

[14] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[15] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta. Fast and accurate static data-race detection
for concurrent programs. In CAV, pages 226–239, 2007.

[16] G. Kahn. The semantics of a simple language for parallel programming. In Information Processing 74,
Proceedings of IFIP Congress 74. North-Holland, 1974.

[17] R.M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384, 1976.

[18] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software Eng., 3(2):125–
143, 1977.

[19] E.A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, 2006.

[20] R. Lublinerman and S. Tripakis. Checking Equivalence of SPMD Programs Using Non-Interference.
Technical Report UCB/EECS-2009-42, EECS Department, University of California, Berkeley, Mar 2009.

[21] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag, New
York, 1995.

[22] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transactions on Software Engineering,
7(4):417–426, July 1981.

[23] J. Ousterhout. Why threads are a bad idea (for most purposes). Invited Talk at the 1996 USENIX
Technical Conference. Available online.

[24] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Informatica,
6(4):319–340, 1976.

14

[25] R. Palmer, G. Gopalakrishnan, and R. Kirby. Semantics driven dynamic partial-order reduction of MPI-
based parallel programs. In Parallel and Distributed Systems - Testing and Debugging (PADTAD-V),
July 2007.

[26] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. In 5th Intl.
Sym. on Programming, volume 137 of LNCS, 1981.

[27] M. Rinard. Analysis of multithreaded programs. In SAS, volume 2126 of Lecture Notes in Computer
Science, pages 1–19. Springer, 2001.

[28] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk, and W. Hwu. Optimization Principles and
Application Performance Evaluation of a Multithreaded GPU Using CUDA. In 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 73–82, February 2008.

[29] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. Myreen, and J. Alglave.
The semantics of x86-cc multiprocessor machine code. In POPL 2009. See talk slides available from
the first author’s web site.

[30] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dynamic data race
detector for multithreaded programs. ACM Trans. Comput. Syst., 15(4):391–411, 1997.

[31] K.C. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Verification of source code transfor-
mations by program equivalence checking. In In Compiler Construction, 14th International Conference,
CC 2005, Proceedings, volume 3443 of LNCS, pages 221–236. Springer, 2005.

[32] S. Siegel, A. Mironova, G. Avrunin, and L. Clarke. Combining symbolic execution with model checking
to verify parallel numerical programs. ACM Trans. on Software Engineering and Methodology, 17(2):1–
34, 2008.

[33] A. Valmari. Eliminating redundant interleavings during concurrent program verification. In PARLE’89,
volume 366 of LNCS, pages 89–103. Springer, 1989.

[34] A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. Kirby, and R. Thakur. Formal verification
of practical mpi programs. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 261–270, New York, NY, USA, 2009. ACM.

[35] M. Wolfe. High performance compilers for parallel computing. Addison-Wesley, 1996.

A Proofs

A.1 Proof of Theorem 1

Define the run ρ∗ of [[P,C, T]] to be the run where the order of thread interleaving is fixed and given by the
global thread index, such that for every n, n′ ∈ I(C, T), if n < n′ then thread n must execute before thread

n′ in ρ∗. In other words, for every sequence of transitions s1
n,α→ s2

n′,α′

→ s3 in ρ∗, we have n ≤ n′. Notice
that ρ∗ is uniquely defined.

We will show that for any other run ρ, we have ρ∗ ' ρ. We will do this by transforming ρ to a run ρ′,

such that ρ′ ' ρ, and ρ and ρ′ have only one difference: a pair of successive transitions s1
n,α→ s2

n′,α′

→ s3 in ρ

such that n > n′ is swapped to give s1
n′,α′

→ s′2
n,α→ s′3 in ρ′. We will show that it is always possible to do this

swapping and moreover that s′3 = s3. Then, it should be clear that ρ ' ρ′. By repeatedly applying swapping,
we can transform ρ to ρ∗. Since all intermediate runs are strongly equivalent, it follows that ρ ' ρ∗.

To show that swapping is always possible, we distinguish the following cases.
Case (A): α′ is a condition statement, i.e., a boolean expression e. In this case, s2 and s3 are identical

except for the program counter of thread n′: this is because condition statements do not modify arrays.

15

We need to show that e is satisfied at state s1. Then, the transition s1
n′,e→ s′2 exists, and s′2 is identical to

s1 except for the program counter of thread n′. Thus, the transition s′2
n,α→ s′3 also exists, and s′3 must be

identical to s3.
Suppose s1 does not satisfy e. On the other hand, we know that s2 satisfies e. Then, there must exist some

array element whose value changes during transition s1
n,α→ s2. This means that α must be an assignment of

the form A[e1] := e3. Moreover, e must have an array sub-expression A[e2]. Finally, it must be that

s1(e1[C, T, b(n), t(n)]) = s2(e2[C, T, b(n′), t(n′)]) (6)

that is, if e1 evaluates to some index j at thread n then e2 evaluates to the same index at thread n′. Let
b1, b2, t1, t2 be such that n = b1 · T + t1 and n′ = b2 · T + t2. Also note that both the assignment A[e1] := e3
and the condition statement e must be statements of the same sync-segment, say Fi. This is because there

is no sync-transition (in fact, there is no transition at all) between transitions s1
n,α→ s2 and s2

n′,α′

→ s3. We
distinguish two further cases.

Case (A.1): A is a global array. Then A[e1] ∈ LHS(Fi) and A[e2] ∈ RHS(Fi). Thus, (e1, e2) ∈ Eg(Fi).
Then Formula (2) is not valid. Indeed, n 6= n′ implies b1 6= b2∨ t1 6= t2, and (6) implies that e1[C, T, b1, t1] =
e2[C, T, b2, t2] holds in the logic of uninterpreted functions. This contradicts the assumption that F is
non-interfering w.r.t. C, T .

Case (A.2): A is a local array. Then again A[e1] ∈ LHS(Fi) and A[e2] ∈ RHS(Fi). In this case,
(e1, e2) ∈ El(Fi). Then Formula (2) is not valid. Indeed, A is a local array, thus there is a separate instance
of A at each core k ∈ {0, ..., C − 1}. Thus, n and n′ must be threads running at the same core, that is,
b1 = b2. This and n 6= n′ imply t1 6= t2, and (6) implies that e1[C, T, b1, t1] = e2[C, T, b1, t2] holds in the
logic of uninterpreted functions. Again this contradicts the assumption that F is non-interfering w.r.t. C, T .
This completes Case (A).

Case (B): α′ is an assignment statement A[e] := e′. In this case, both transitions s1
n′,α′

→ s′2 and s′2
n,α→ s′3

exist. We need to show that s′3 = s3. Suppose s′3 6= s3. This means that there exists some array A and
element A[j] such that s′3(A[j]) 6= s3(A[j]). There are two cases: either A[j] is set in both α and α′, or it is
only set in one of them, and the other modifies a value used in the first. In both cases, using reasoning similar
to the above, we can show that one of non-interference formulas (2) or (2) is invalid, which contradicts the
assumption that F is non-interfering. The details are omitted.

A.2 Proof of Theorem 2

Suppose s ∈ Rf (P,C, T). Suppose (3) is not satisfied at s. Then there exist b ∈ {0, ..., C − 1} and
t ∈ {0, ..., T − 1} such that for any control-flow path π, φπ[C, T, b, t] is not satisfied at s. Let n = b · T + t.
Let ρ be a maximal run ρ starting at some initial state s0 and reaching s. P is non-interfering w.r.t. C, T ,
therefore, by Theorem 1, P is strongly deterministic w.r.t. C, T . This means that we can assume that ρ is
such that thread n is the last thread to execute, after all other threads have executed: by strong determinism,
ρ will still reach the same state s.

Let π = q0
α1→ q1

α2→ · · · αm→ qm be the control-flow path that thread n follows in ρ. There must be some
i ∈ {1, ...,m} such that ψi[C, T, b, t]) is not satisfied at s, where ψi is the boolean expression obtained from
αi. We distinguish two cases.

Case (A): αi is an assignment statement A[e] := e′. Then, ψi is the equality A[e] = e′. Let j =
s(e[C, T, b, t]) and v = s(e′[C, T, b, t]). ψi[C, T, b, t] not satisfied at s means s(A[j]) 6= v. Since π is the
control-flow path that thread n follows in ρ, thread n must execute the assignment A[e] := e′. Therefore,
ρ must have a transition s1

n,αi→ s2. We claim that: (1) s1(e[C, T, b, t]) = j (which means that A[j] is
written in this transition) and (2) s1(e′[C, T, b, t]) = v. From the semantics of assignments, (1) and (2) imply
s2(A[j]) = v. By the SAA assumption, A[j] is written exactly once in ρ, therefore, its value at s must be
the same as its value at s2. Thus, s(A[j]) = v: contradiction.

We proceed to prove claims (1) and (2) above. We will show that every sub-expression of e or e′ has the
same value at s1 as it has at s. Such a sub-expression can be of the following type:

16

• A constant: obviously it always has the same value.

• A parameter among C,T, b, t: because these parameters are substituted by the same values C, T, b, t,
respectively, they are the same in s1(e[C, T, b, t]) and s(e[C, T, b, t]).

• A global input array element: input arrays are never written, thus they maintain a constant value
throughout a run.

• An element of a writable array, say, B[k]. By the LAI assumption, B[k] must be written before it is
read, therefore, before the transition s1

n,αi→ s2. By the SAA assumption, B[k] is only written once.
Therefore, B[k] has the same value at s1 and at s.

Thus, claims (1) and (2) hold, which completes the proof for case (A).
Case (B): αi is a condition statement, i.e., a boolean expression e. Then, ψi is e. ψi[C, T, b, t] not

satisfied at s means s(e[C, T, b, t]) = false. Since π is the control-flow path that thread n follows in ρ, thread
n must execute the condition statement e. Therefore, ρ must have a transition s1

n,e→ s2, which implies that
s1(e[C, T, b, t]) = true. Following a reasoning similar to the above, we can show that e[C, T, b, t] takes the
same value at s1 and at s: contradiction. This completes the proof.

A.3 Proof of Theorem 3

Suppose P1 6≈Γ P2. Then there exist C,T ∈ N such that (C,T) ∈ Γ and P1 6≈C,T P2. This in turn means that
there exist maximal runs ρ1 ∈ [[P1,C,T]] and ρ2 ∈ [[P2,C,T]] such that ρ1 6≈ ρ2. That is, ρ1 and ρ2 start at
equivalent initial states s10 ≈ s20 but end at non-equivalent final states s1 6≈ s2.

(C,T) ∈ Γ implies that φΓ is satisfied by C,T. We will show that φpost also holds, but φout does not hold.
This means (4) is invalid.

s1 6≈ s2 implies that there exist B ∈ Gout and j such that s1(B[j]) 6= s2(B[j]). We will show that
φpost ∧ B1[j] 6= B2[j] is a satisfiable formula. Suppose it is not. Then, φpost implies B1[j] = B2[j]. In the
theory of uninterpreted functions this means that if states s and s′ satisfy φpost then s(B[j]) = s′(B[j]). By
Theorem 2, s1 and s2 satisfy φpost, thus, s1(B[j]) = s2(B[j]): contradiction.

B Proving equivalence for the array reversal example

As shown in Section 6, Formula (4) instantiates on our running example as Formula (5). To prove that the
two array reversal programs are equivalent, we need to show that Formula (5) is valid. Suppose this is not
the case. Then there exist C,T ∈ N such that(

∀b ∈ {0, ...,C− 1},∀t ∈ {0, ...,T− 1} :
B1[C · T− 1− (b · T + t)] = A[b · T + t] ∧
Locb[t] = A[b · T + t] ∧
B2[(C− 1− b) · T + t] = Locb[T− 1− t]

) (7)

holds and

∀j ∈ {0, ...,C · T− 1} : B1[j] = B2[j] (8)

does not hold. The latter implies there exists j ∈ {0, ...,C · T − 1} such that B1[j] 6= B2[j]. We can find
unique b0 ∈ {0, ...,C−1} and t0 ∈ {0, ...,T−1} such that j = b0 ·T+t0. Then, B1[b0 ·T+t0] 6= B2[b0 ·T+t0].

Let b = C− 1− b0 and t = T− 1− t0. Then:

C · T− 1− (b · T + t) = b0 · T + t0 (9)

17

From (7) and the facts b0, b ∈ {0, ...,C− 1} and t0, t ∈ {0, ...,T− 1}, we get the following equalities:

B1[C · T− 1− (b · T + t)] = A[b · T + t] (10)
Locb[t] = A[b · T + t] (11)

B2[(C− 1− b) · T + t0] = Locb[T− 1− t0] (12)

From (9) and (10) we get

B1[b0 · T + t0] = A[b · T + t] (13)

From (13), (11) and the fact t = T− 1− t0, we get

B1[b0 · T + t0] = Locb[t] = Locb[T− 1− t0] (14)

From (14), (12) and the fact b = C− 1− b0, we get

B1[b0 · T + t0] = B2[(C− 1− b) · T + t0] = B2[b0 · T + t0]

which contradicts our assumption B1[b0 · T + t0] 6= B2[b0 · T + t0]. Thus, (5) must be valid.

18

	Introduction
	Related work
	Background: the CUDA programming model
	A formal model of SPMD programs
	Properties of interest
	Analysis
	Implementation and experiments
	Conclusions and ongoing work
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Proving equivalence for the array reversal example

